11,370 research outputs found

    Effects of motion on jet exhaust noise from aircraft

    Get PDF
    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles

    Intrinsic Cavity QED and Emergent Quasi-Normal Modes for Single Photon

    Full text link
    We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semi-transparent mirror for single photon transports such that quasi-normal modes (QNM's) emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasi-bound states in the waveguide continuum. Solid state implementations based on a dc-SQUID circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.Comment: 4 pages,5 figures, Comments welcom

    A Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon

    Get PDF
    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines the well-developed silicon technology with expected advances in MRFM.Comment: 9 pages, 1 figur

    Quantum Measurement of a Single Spin using Magnetic Resonance Force Microscopy

    Get PDF
    Single-spin detection is one of the important challenges facing the development of several new technologies, e.g. single-spin transistors and solid-state quantum computation. Magnetic resonance force microscopy with a cyclic adiabatic inversion, which utilizes a cantilever oscillations driven by a single spin, is a promising technique to solve this problem. We have studied the quantum dynamics of a single spin interacting with a quasiclassical cantilever. It was found that in a similar fashion to the Stern-Gerlach interferometer the quantum dynamics generates a quantum superposition of two quasiclassical trajectories of the cantilever which are related to the two spin projections on the direction of the effective magnetic field in the rotating reference frame. Our results show that quantum jumps will not prevent a single-spin measurement if the coupling between the cantilever vibrations and the spin is small in comparison with the amplitude of the radio-frequency external field.Comment: 16 pages RevTeX including 4 figure

    Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions

    Full text link
    We consider the reduction of the duality invariant approach to M-theory by a U-duality group valued Scherk-Schwarz twist. The result is to produce potentials for gauged supergravities that are normally associated with non-geometric compactifications. The local symmetry reduces to gauge transformations with the gaugings exactly matching those of the embedding tensor approach to gauged supergravity. Importantly, this approach now includes a nontrivial dependence of the fields on the extra coordinates of the extended space.Comment: 22 pages Latex; v2: typos corrected and references adde

    Atomic Interferometer with Amplitude Gratings of Light and its Applications to Atom Based Tests of the Equivalence Principle

    Full text link
    We have developed a matter wave interferometer based on the diffraction of atoms from effective absorption gratings of light. In a setup with cold rubidium atoms in an atomic fountain the interferometer has been used to carry out tests of the equivalence principle on an atomic basis. The gravitational acceleration of the two isotopes 85Rb and 87Rb was compared, yielding a difference Dg/g =(1.2 +-1.7)x10^{-7}. We also perform a differential free fall measurement of atoms in two different hyperfine states, and obtained a result of Dg/g =(0.4 +-1.2)x10^{-7}.Comment: 4 Pages, 4 figures, accepted for Physical Review Letter

    Dynamics of a Quantum Control-Not Gate for an Ensemble of Four-Spin Molecules at Room Temperature

    Get PDF
    We investigate numerically a single-pulse implementation of a quantum Control-Not (CN) gate for an ensemble of Ising spin systems at room temperature. For an ensemble of four-spin ``molecules'' we simulate the time-evolution of the density matrix, for both digital and superpositional initial conditions. Our numerical calculations confirm the feasibility of implementation of quantum CN gate in this system at finite temperature, using electromagnetic π\pi-pulse.Comment: 7 pages 3 figure

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Calculations on the forces and moments for an oscillating wing-aileron combination in two-dimensional potential flow at sonic speed

    Get PDF
    The linearized theory for compressible unsteady flow is used, as suggested in recent contributions to the subject, to obtain the velocity potential and the lift and moment for a thin harmonically oscillating, two-dimensional wing-aileron combination moving at sonic speed. The velocity potential is derived by considering the sonic case as the limit of the linearized supersonic theory. From the velocity potential explicit expressions for the lift and moment are developed for vertical translation and pitching of the wing and rotation of the aileron. The sonic results are compared and found to be consistent with previously obtained subsonic and supersonic results. Several figures are presented showing the variation of lift and moment with reduced frequency and Mach number and the influence of Mach number on some cases of bending-torsion flutter
    • …
    corecore